The Veronese Construction for Formal Power Series and Graded Algebras

نویسندگان

  • FRANCESCO BRENTI
  • VOLKMAR WELKER
چکیده

Let (an)n≥0 be a sequence of complex numbers such that its generating series satisfies ∑ n≥0 ant n = h(t) (1−t)d for some polynomial h(t). For any r ≥ 1 we study the transformation of the coefficient series of h(t) to that of h〈r〉(t) where ∑ n≥0 anrt n = h 〈r〉(t) (1−t)d . We give a precise description of this transformation and show that under some natural mild hypotheses the roots of h〈r〉(t) converge when r goes to infinity. In particular, this holds if ∑ n≥0 ant n is the Hilbert series of a standard graded k-algebra A. If in addition A is CohenMacaulay then the coefficients of h〈r〉(t) are monotonely increasing with r. If A is the Stanley-Reisner ring of a simplicial complex ∆ then this relates to the rth edgewise subdivision of ∆ – a subdivision operation relevant in computational geometry and graphics – which in turn allows some corollaries on the behavior of the respective f -vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On algorithmically checking whether a Hilbert series comes from a complete intersection

It is not possible to determine from the Hilbert series whether a graded Noetherian algebra is a complete intersection. Nevertheless, such Hilbert series satisfy very stringent conditions and we define a concept CI-type for formal power series, that embodies some of these necessary properties. This definition works for algebras that are not standard i. e. not generated in degree 1. For the clas...

متن کامل

Deformation of Infinite Dimensional Differential Graded Lie Algebras

For a wide class of topological infinite dimensional differential graded Lie algebras the complete set of deformations is constructed. It is shown that for several deformation problems the existence of a formal power series solution guarantees the existence of an analytic solution.

متن کامل

Hilbert Functions of Veronese Algebras

We study the Hilbert polynomials of non-standard graded algebras R, that are finitely generated on generators not all of degree one. Given an expression P (R, t) = a(t)/(1 − t) for the Poincaré series of R as a rational function, we study for 0 ≤ i ≤ l the graded subspaces ⊕kRkl+i (which we denote R[l; i]) of R, in particular their Poincaré series and Hilbert functions. For example, we prove th...

متن کامل

Examples of Infinitely Generated Koszul Algebras

of the residue field K ∼= A/A+ as an A-module. Here ∂0 : A → K is the natural augmentation, the Fi are considered graded left free A-modules whose basis elements have degree 0, and that the resolution is linear means the boundary maps ∂n, n ≥ 1, are graded of degree 1 (unless ∂n = 0). The examples we will discuss in Section 1 are variants of the polytopal semigroup rings considered in Bruns, Gu...

متن کامل

Positive-additive functional equations in non-Archimedean $C^*$-‎algebras

‎Hensel [K‎. ‎Hensel‎, ‎Deutsch‎. ‎Math‎. ‎Verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎Fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{Z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎Then $|x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008